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The purpose of this paper is to propose a noncommutative generalization of a gauge
connection and the free-field Yang–Mills equations. The paper draws upon the tech-
niques proposed by Heller et al. for the noncommutative generalization of the Einstein
field equations.
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1. INTRODUCTION

The module of contravariant vector fields X(M) on a manifold M can be
identified with the module of derivations of the commutative algebra C∞(M) of
smooth functions on M . A derivation of C∞(M) is a mapping X : C∞(M) →
C∞(M) which is linear, X(af + bg) = aXf + bXg, and which satisfies the so-
called Leibniz rule, X(fg) = f X(g) + X(f )g. The set of all such derivations
forms a left-module over C∞(M); i.e., if f ∈ C∞(M) and X ∈ X(M), then f X ∈
X(M).

The approach of Heller et al. (2004) is to generalize this to a module of
derivations DerA of a noncommutative algebra A of functions on a groupoid bun-
dle. They construct a groupoid bundle � = E × G over a space–time manifold
M , and introduce an algebra (A, ∗) of functions on �, where ∗ is a noncommu-
tative convolution product. In the case where G is a finite group, the module of
derivations of this algebra decomposes into a direct sum of outer derivations and
inner derivations, DerA = OutA ⊕ InnA. The outer derivations are isomorphic
to X(M); they simply consist of the vector fields on M lifted to �. The inner
derivations of an algebra consist of those defined by elements of the algebra itself;
each element of an algebra f ∈ A defines a derivation Xf = ad f of A by the
condition Xf (g) = [f, g] = f ∗ g − g ∗ f . Letting V denote DerA, Heller et al.
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define a generalized metric to be a mapping G : V × V → C∞(M), and decom-
pose a generalized metric as the sum G = g + h. The first component g is the lift to
� of a conventional metric tensor field on M , g : X(M) × X(M) → C∞(M). The
first component, therefore, provides the commutative part of a generalized metric.
The second component provides the noncommutative part, h : InnA × InnA →
C∞(M). From the generalized metric, Heller et al. define a generalized Einstein
tensor, which also duly decomposes into a commutative part and a noncommu-
tative part, Gg + Gh. Thence they define the generalized vacuum field Einstein
equation to be Gg + Gh = 0.

In the case where G is a nonfinite group, Heller et al. (2005) employ
a module of derivations with a less straightforward decomposition, DerA =
DerVA ⊕ DerHA ⊕ InnA, and a generalized metric with three components. Given
that Heller et al. (2005) are interested in generalizing general relativity, they
consider the case where G is a noncompact semisimple Lie group, such as the
Lorentz group. In contrast, this paper is interested in generalizing gauge field
theory, hence it will consider the case where G is a compact connected Lie
group.

The approach to noncommutative gauge theory espoused in this paper dif-
fers from existing approaches which can be found in the literature. The ex-
isting approaches tend to generalize the covariant derivative rather than the
connection. As Madore comments, “from the point of view of noncommu-
tative geometry, which places primary importance upon the algebra of func-
tions, it is [this] approach which is the more convenient and is the one which
we shall consider here; the covariant derivative is defined as a linear map be-
tween modules which satisfies certain Leibniz rules. No attempt is made to de-
fine a noncommutative generalization of a connection as a 1-form on a prin-
cipal fibre bundle,” (1999, p. 87). In contrast, the function of this paper is
to propose just such a noncommutative generalization of a connection as a 1-
form.

2. A GENERALIZED GAUGE CONNECTION
AND YANG-MILLS EQUATION

Let M denote the base space–time manifold, let G be a compact connected Lie
group, let E denote a principal G-bundle over M , and let � denote the groupoid
bundle over space–time, � = E × G. We shall assume that M is Minkowski
space–time, and that E is therefore a trivial bundle, isomorphic to M × G. As
a consequence, the groupoid bundle is isomorphic to M × G × G. Let p denote
an arbitrary element of E, let g denote an arbitrary element of G, let γ = (p, g)
denote an element of �, let x denote an arbitrary element of M , and let π denote
the projection mapping E → M .
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The definition of a groupoid need not detain us here (see Section 2 of Heller
et al. (2004)). What is crucial is that the algebra of functions A = C∞(�,C) on
the groupoid is equipped with a natural convolution product,

(f1 ∗ f2)(γ ) =
∫

γ1∈�d(γ )

f1
(
γ ◦ γ −1

1

)
f2(γ1) dγ1,

which renders A a noncommutative algebra. For γ = (p, g), �d(γ )
∼= G is the set

of elements {(p, g′) : g′ ∈ G} = p × G.
Let us introduce a module of derivations of this algebra, V = DerA =

DerRA ⊕ InnA, over the ring C∞(M). The space of derivations DerRA is the
space of right-invariant vector fields on E, each of which lifts to a derivation of
A. As such, DerRA is clearly a submodule of the C∞(E)-module of vector fields
on E, DerRA ⊂ X(E). There is, in turn, a submodule of DerRA consisting of
vertical derivations DerVA; these are right-invariant vector fields on E which are
tangent at each point p to the fiber Ex over π (p) = x. At each point p ∈ E the
tangent vector space TpE contains a so-called vertical subspace VpE, consisting
of the vectors which are tangent to the fiber Ex . A G-connection on E selects a
complementary horizontal subspace Hp at each point p in such a way that the
horizontal subspaces are invariant under the right action of G:

Hpg = Rg∗(Hp).

A G-connection on E also thereby selects a complementary horizontal sub-
space DerHA so that one obtains a direct sum decomposition DerRA = DerVA ⊕
DerHA. Let T E denote the tangent bundle of E, and let T ∗E denote the cotan-
gent bundle. The horizontal subspace can also be defined to be the kernel of a
lie-algebra valued one-form on E,

ω : T E → g,

which maps the vertical subspace at each point to g, the lie algebra of G, and
which respects the right action of G in the sense that, for each v ∈ TpE,

ωpg(Rg∗pv) = ad(g−1)ωp(v).

As such, ω is a cross-section of the bundle T ∗E ⊗ (E × g). This is the same as
saying that ω is an element of �(T ∗E) ⊗ g, where �(T ∗E) denotes the space of
cross-sections of T ∗E. The one-form ω can also be treated as a linear mapping
ω : �(T E) → C∞(E) ⊗ g. The space of cross-sections �(T ∗E), is isomorphic
to the dual space X∗(E), hence the connection one-form ω is an element of
X∗(E) ⊗ g.

While a conventional “commutative” connection determines a decomposi-
tion of DerRA into DerVA ⊕ DerHA, I propose that a generalized, noncommu-
tative connection determines a decomposition of the larger space of derivations
V = DerA = DerRA ⊕ InnA into a horizontal and a vertical subspace, VH ⊕ VV .
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While the horizontal subspace of a conventional connection can be defined as the
kernel of a linear mapping ω : �(T E) → C∞(E) ⊗ g, the horizontal subspace of
a generalized connection would be defined as the kernel of a linear mapping

W : V → A ⊗ g,

which maps VV to A ⊗ g, and which respects the right action of G on V in the
sense that, for any X ∈ V ,

W(RgX) = ad(g−1)W(X).

DerRA is the space of vector fields on E which are invariant under the right-action
of G, hence G fixes every element of DerRA. The right action of G on InnA
is defined via the right action of G on A; g′ ∈ G maps f ∈ A to f ′ ∈ A where
f ′(p, g) = f (pg′, g).

Note that the generalized connection one-form is an element of V ∗ ⊗ g,
where V ∗ = (DerRA)∗ ⊕ (InnA)∗ is the set of one-forms on the derivations V .
While the space of derivations is a left C∞(M)-module, the space of one-forms is
a left A-module. Given a basis {τi} of (DerRA)∗, and a basis {θj } of (InnA)∗, a
generalized G-connection W : V → A ⊗ g can be expressed as an A ⊗ g-linear
combination of these basis elements:

W =
∑

i

fi(γ )τi +
∑

j

gj (γ )θj

fi(γ ) is the lift to � of an element of C∞(E) ⊗ g, while gj (γ ) is an element of
A ⊗ g. A generalized G-connection can be written as a sum W = ω1 + ω2, where
ω1 ∈ (DerRA)∗ ⊗ g is the commutative part of the generalized connection, and
ω2 ∈ (InnA)∗ ⊗ g is the noncommutative part.

Given a conventional gauge connection one-form ω, the conventional free-
field Yang–Mills equations are

div �ω = 0,

where �ω is the so-called curvature two-form of ω. Given a generalized gauge
connection, one can proceed analagously.

First, one can define the exterior derivative of W as

dW =
∑

i

dfi ∧ τi +
∑

j

dgj ∧ θj

The exterior covariant derivative of the generalized one-form W is defined to be
the two-form �W : V × V → A ⊗ g which is such that

�W (X,W ) = dW(XH,WH),
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where X,W are any pair of derivations in V , and XH,WH denote the horizontal
components of those derivations. The generalized two-form �W is an element of
�2V ∗ ⊗ g, where �2V ∗ is the two-fold antisymmetric tensor product of V ∗.

Hence, given a generalized G-connection W : V → A ⊗ g, one can define
the generalized curvature two-form �W : V × V → A ⊗ g. To define generalized
free-field Yang–Mills equations, it is first necessary to find a generalization of the
divergence operator, the contraction of the covariant derivative, div = C · ∇. Now,
given a left A module H, Madore (1999, p. 87) defines a Yang–Mills covariant
derivative to be a map

∇ : H → �1(A) ⊗ H,

where �1(A) is the set of one-forms on the space of derivations of the algebra. In
the case of relevance here, H = �2V ∗ ⊗ g, a left A module. Hence, a Yang–Mills
covariant derivative provides a mapping:

∇ : �2V ∗ ⊗ g → �1(A) ⊗ �2V ∗ ⊗ g.

Given the covariant derivative ∇�W ∈ �1(A) ⊗ �2V ∗ ⊗ g, to obtain the
contraction one must first map one of the V ∗-factors into a V -factor. To do this,
one utilizes the fact that there is a natural nondegenerate metric G : V × V →
C∞(M) on V which defines a canonical isomorphism between V and V ∗. Given
V = DerVA ⊕ DerHA ⊕ InnA, one has a nondegenerate metric on each direct
summand, (Heller et al. 2005, Section 4):

1. The trace operation T r on the lie algebra g enables one to define a natural
killing form metric on g. From this one can define a nondegenerate metric
on the space of vertical right-invariant vector fields DerVA on E,

gV (Y,Z) = T r(ι(Yp) ◦ ι(Zp)).

ι is an isomorphism between each vertical subspace VpE and the lie
algebra g. Because each element of DerVA is right-invariant, one can take
the value of such a vector field at a single arbitrary point p of each fibre
Ex , so that gV maps each pair Y,Z ∈ DerVA to an element of C∞(M).

2. Given that each element of DerHA corresponds to a vector field on M ,
the metric tensor g on M determines a natural nondegenerate metric gH

on DerHA.
3. Finally, one can define a nondegenerate metric on InnA by defining

gInn(ad a, ad b) = T r(a ∗ b), where

(T r a)(x) =
∫

G

a(x, g, g) dg,

given the isomorphism between � and M × G × G.
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The nondegenerate metric G = gV + gH + gInn on V = DerVA ⊕ DerHA ⊕
InnA defines a canonical isomorphism between V and V ∗ by the edict that u∗ =
G(u, ). Using this isomorphism in the opposite direction, one can map one of
the V ∗-factors in �1(A) ⊗ �2V ∗ ⊗ g into a V -factor, and then one can contract
any element of this space by allowing the �1(A)-components to act upon the V -
components. Given the definition of the divergence div = C · ∇, one can define
the generalized Yang–Mills equations to be

div �W = 0.
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